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Abstract:	
   
The purpose of this experiment was to investigate the measurement of the strain and force using 
various different theoretical methods. The spring constants were calculated to be 467.79 N/m and 
464.79 N/m respectively for the static method and the dynamic method. The Young Modulus was 
found to be 42.7±0.4 GPa and compared to the theoretical value 69 GPa, resulting a percent error 
of 38%. The moment of inertia was found to be 4.45±  0.04  ×10!!". The theoretical and 
experimental strains were found to have a similar correlation with a considerate discrepancy. The 
Gauge Factor for the experimental SG 3 was 2.190±0.005, in comparison to the theoretical value 
was 2.08 with 5% error.  
  



Introduction:	
  
 The objective of this lab is to explore the properties of solid mechanics through a series 
of theories and equations. In this set up, a beam of aluminum is fixed in one end with strain 
gauges attached at different parts of the beam. These strain gauges will help create voltage 
outputs according to the extent of the strain and bent done by the loads. Strain gauges are etched 
from thin foil metal sheets that are bonded to plastic backing1. The purpose of the strain gauge is 
to detect resistance change at each portion of the beam at different for each load and eventually 
help determine the different strain and force properties of the beam. The strain gauge uses the 
Wheatstone Bridge to help accurately determine even small resistance changes. Therefore, it is 
convenient to use it on the measurement of the forces of the beam and calculate properties such as 
the spring constant, Poisson’s ratio, Young’s modulus and the gauge factor.  

Theory:	
  	
  
 The first objective of the lab involves determining the beam deflection. When weight is 
applied to the free end, the force exerts a vertical deflection defined by the following equation, 
where E is the Young’s modulus, F is the force applied at the free end, I is the moment of inertial 
described by equation (2), L is the longitude of the beam and x is the placement where it is 
calculated:  
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 Conversely the maximum vertical deflection would be achieved at the free end when 
x=L, deriving to the next equation: 
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 The Young’s modulus, E, is derived from the force and displacement equation from 
equation 3 and the Hooke’s Law of spring law at equation 5, where k is the spring constant:  

(4) 𝐸 = !!!
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(5) 𝐹 = 𝑘𝑦 
To find the spring constant k, two methods were used: static and dynamic method. The 

static method was already mentioned above at equation 5 using the Hooke’s Law. In comparison 
the dynamic method uses the concept of oscillation to solve for k. The equation for oscillation 
angular frequency is the following, where 𝜔 is the oscillation angular frequency 𝜆L is 1.88 for 
first natural frequency, M is the beam mass and m is the load mass.  
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If the mass of the beam is neglected, then the oscillation of a mass can be found using the 
following equation: 
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To find the strain, Hooke’s Law states that it is proportional to the stress, where the strain 
(𝜀) can be obtained in the change in length over the original length and E is the Young’s Modulus 
or elastic modulus.  

(8) 𝜎 = 𝐸𝜀 
 For 3D solids, Poisson’s ratio (𝜐) helps compare the transverse strain to the longitudinal 
strain with the following equation:  
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 All measurements are based on the results from the strain gauges. The principle follows 
that the length change of a wire results in a change of resistance1. R is the resistance, 𝜌 is the 
resistivity of the material, L is the length and A is the area.  
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; where b is the diameter of the wire  

 At last, using the principle of strain gauge along with the Poisson’s ratio, the Gauge 
Factor is derived to the following, where el is the longitudinal strain, delta R is the change in 
resistance and R is the resistance:  
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Procedure:	
  
 First using the static method, the dimensions of the beam were recorded as well as the 
initial height of the free end of the beam from the bench top. Then the strain gauge was connected 
to the strain and Pressure and Conditioning Board. The board was powered with +15V, -15V, and 
ground from the Proto-Board. Additionally, the board contained a Wheatstone Bridge, to which 
the strain gauge was connected, completing the onboard bridge. The circuit was run for a few 
minutes and the voltage from the bridge was measured using a handheld DMM. This voltage was 
then nulled from future readings. To collect data for the strain voltage, ~200g were added to the 
free end of the beam. The resulting height difference and voltage output were then recorded. This 
process was repeated for 4 different weight measurements, and then done in reverse order for 
hysteresis analysis. When the process was completed for a single strain gauge, it was then 
repeated for the remaining gauges using the same weights.  
 Next in the dynamic method, the strain gauge reaction was displayed on the oscilloscope 
rather than the DMM. Using a load of ~400g, the strain gauge furthest from the fixed end was 
analyzed by gently pushing down on the beam causing it to oscillate. The oscillation was then 
traced onto the oscilloscope, from which the period was determined. This process was then 
repeated for 4 more weights.  

Result	
  
 The first part of the experiment involved measuring the beam deflection at each weight, 
then plot it against the bridge output voltage. The initial measurements of the set-up were are 
follows: The dimensions of the beam were 32.1mm width, 5.5 mm thickness and 497 mm long 
and the strain gauge were positioned as set in Table 1.  
 

LSG1  LSG2 LSG3 LSG4 LSG5 

305 mm 405 mm 415 mm  457 mm  457 mm  

Table 1: Position of Strain Gauges. 
 

Using the data collected in the static method, table 2, the load could be plotted against the 
change in height. The slope of the resulting Figure 1, 464.79 N/m, was the spring constant k, of 
the beam. This value could then be used in equation 4, to find Young’s modulus, E along the 
moment of Inertia using equation 2 that was calculated to be 4.45±  0.04  ×10!!". For the data 
collected, E was found to be 42.7±  0.4 GPa. The given value was 69GPa. On a single graph, all 
of the strain gauges were plotted bridge voltage against the load as seen in Figure 2 using all of 
the gauges in Table 2 appendix. Further discussion in regards to their relations will be addressed 
in the discussion section.  



 
Figure 1: Load (N) against Vertical Deflection   Figure 2: Bridge Voltage against all strain gauges 
  

The experimental and theoretical strain for both SG1 and SG2 were then plotted as a 
function of load, as shown as Figure 3 and Figure 4 below. The relationship shows that both 
graphs have the same positive correlation. However, both of their experimental strains are 
vertically shifted down. SG1 shows a positive linear correlation for both instances, whereas SG2 
shows concave up data points in comparison to its theoretical strain.  

 

  
Figure 3: Experimental against theoretical Strain in relationship to the Load for SG 1.  
Figure 4: Experimental against theoretical Strain in relationship to the Load for SG 2.  
 
 Then the plot of the experimental strain between SG4 and SG5 was graphed in order to 
find the experimental Poisson’s ratio. According to Figure 5, the measured Poisson’s, the slope of 
the graph was 0.4716.  

 
Figure 5: Experiment Strain of SG 4 and SG 6. 

 
In the second part of the experiment, the objective was to use the dynamic method to find 

the spring constant k using the equation 6 of angular frequency. By graphing the load mass versus 
!
!!, the slope of the line could be taken to find the spring constant. Graphing the measured data, k 
was found to be 469.68 N/m. However when the theoretical values were graphed against this, the 



spring constant varied slightly. When the mass of the beam was taken into account, equation 6 
was used and resulted in a spring constant of 464.45 N/m. When the mass of the beam was 
neglected, the spring constant was 464.79 N/m, found using equation 7. The graph of the 
oscillations for each load are shown in Appendix Figure 8-12. 
 

 
Figure 6: Spring constant of the beam using equation 6 and equation 7 

Discussion	
  
 In the first part of the experiment, the resulting spring constant from Figure 1 of the load 
against change in height was 467.79 N/m. Then the value was inserted to equation 4 to find the 
Young’s modulus 42.7±0.4 GPa. In comparison to the given value, 69 GPa, the percent error was 
38.1%. This shows that the static method was an inaccurate approach to find the properties of the 
solids mechanics. The load on the beam should not exceed 1000 grams because of the limitations 
on the maximum elastic load from the strain gauges.  

The bridge voltage, Vb, and the load of all 5 strain gauges were plotted against each other 
in Graph 2. All of the gauges follow a linear trend as is expected due to the resistance increasing 
as weight is added to the beam. Studying the trend lines of SG2 and SG3, the slopes of these 2 
graphs are nearly the same but opposite in sign. This is to be expected as these gauges were 
placed at the same distance from the free end, however SG2 was placed at the top of the beam 
while SG3 was placed at the bottom of the beam. This will lead to a opposite trends because the 
tension in the beam due to the added weight would cause the resistance to increase, while at the 
same time the bottom of the beam would experience a compression, causing the resistance to 
decrease. 

Then, the experimental and theoretical strain for both SG1 and SG2 were then plotted as 
a function of load, as shown as graph 3 and graph 4 in the results section. As mentioned before, 
both graphs show a positive correlation and shifted vertically down. The vertical shift shows a 
systematic experimental error, this is most likely an error from the set-up of the instrument. 
Regardless of the systematic error, the slope for both experimental and theoretical strain in both 
graph differ. Looking at SG 1 graph 3, although both data points had linear positive correlation, 
the slope of the data points for the experimental strain was smaller than the theoretical one. 
Similarly, the slope for the SG 2 graph 4, doesn’t only show different in slope between the two 
data sets, but also the experimental strain showed to be concave up. The reason behind the 
discrepancy in the slope might be because the instrument is not as sensitive as expected from the 
given relation. Therefore the slopes for the experimental strains were lower than the theoretical 
one. The concave up phenomena for SG 2 might be due to the position of the SG 2 achieving its 
maximum elasticity, hence the larger the slope the larger the load was. As a result, SG 1 would be 
a more accurate measure for an inclinometer. 

The calculated Gauge Factor for SG 3 was calculated by finding the optimal maximum 
strain and plugging it into equation 10. The resulting G.F was 2.190± 0.005. In comparison to the 
theoretical G.F, 2.08, the percent error was 5.0%, which means that the relative relationship 
between the strain gauges were accurate. In addition when SG 4 elasticity was plotted against SG 



5 elasticity, the slope that is the Poisson number was 0.4716, compared to the given Poisson’s 
number, 0.33, it has a 30% error.  

In part 2 of this experiment the beam was analyzed using the dynamic method. The 
oscillation frequency was found by using equation 6, taking into account the mass of the beam, 
and equation 7, neglecting the mass of the beam. Comparing the two theoretical results of 
equation 6 and 7, it can be noted that the k constant found is nearly the same. When the mass of 
the beam was taken into account, the k constant was 464.45 N/m, Leading to a 1.126% error in 
our experimental results. When the mass of the beam was neglected, the spring constant was 
464.79 N/m, leading to a 1.052% error in our results. Comparing the spring constant results from 
the static method value to the results using the dynamic method, it can be seen that the spring 
constant found using the static method is slightly closer to the experimental value. However, 
looking at the equations we would have expected the dynamic method to be more accurate as it 
takes into account the mass of the beam as well as multiple oscillations of the mass. This 
discrepancy may have been a result of the method used to find the period of oscillation. In the 
experiment the trace tool was used to calculate the time difference from peak to peak of an 
oscillation. However when these values were calculated, they varied slightly from the reported 
period on the oscilloscope. This error may have been the cause of the slight offset from the 
theoretical value. 

Conclusion:	
  
 When determining the spring constant using the static method, the k constant was 464.79 
N/m and when using the dynamic method, k was 469.68 N/m. Young’s modulus of aluminum, E, 
was determined to be 42.7±0.4 GPa, resulting in a 38% error from the expected value. Next, the 
theoretical and experimental strain values were graphed against each other to display that both 
had a positive correlation, however there was a large discrepancy between the actual values. The 
calculated Gauge Factor for SG 3 was calculated by finding the optimal maximum strain and 
using equation 10. The resulting G.F was 2.190± 0.005. Finally, these graphs were used to find 
Poisson’s ration of aluminum, 0.4716. 

Error	
  Propagation:	
  	
  
 All standard deviations were calculated using the following equation:  

 
Figure 72: General equation for the Standard Deviation for multiplication and division 
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Appendix:	
  
Gauge 1 

Load V 

0 0 

1.95219 -0.111 

3.925962 -0.094 

5.962518 -0.073 

7.956891 -0.056 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Load and Voltage of Strain Gauges 1-5.  
 

	
  
Figure	
  8:	
  Oscillation	
  for	
  499.2	
  g	
   	
   Figure	
  9:	
  Oscillation	
  for	
  603.5	
  g	
  

Gauge 2 

Load V 

0 0 

1.95219 -0.018 

3.925962 -0.005 

5.962518 0.017 

7.956891 0.056 

Gauge 3 

Load V 

0 0 

1.95219 -0.028 

3.925962 -0.054 

5.962518 -0.081 

7.956891 -0.107 

Gauge 4 

Load V 

0 0 

1.95219 0.023 

3.925962 0.045 

5.962518 0.07 

7.956891 0.095 

Gauge 5 

Load V 

0 0 

1.95219 -0.01 

3.925962 -0.024 

5.962518 -0.034 

7.956891 -0.044 

 



	
  	
  	
  	
  	
  	
  	
   	
  
Figure	
  10:	
  Oscillation	
  for	
  712.9	
  g	
   	
   	
  	
  	
  Figure	
  11:	
  Oscillation	
  for	
  817.3	
  g	
  
	
  

	
  
Figure	
  12:	
  Oscillation	
  for	
  963.2	
  g	
  
 


